
LucidLink Filespaces
Technical Overview

LucidLink Filespaces provide a distributed, log-structured file system
layer for object storage, allowing simple and high performance access.

The main issues with storage today are that it is siloed, expensive,
and ages out quickly.

Trying to realize the promise of the cloud, organizations are
changing the way that they access and consume data. However,
reality gets in the way. It is hard to centralize and manage storage.
It is hard to refactor disparate systems to consume one unified
dataset; one single source of truth. And it is even more challenging
to control infrastructure cost.

We combined concepts from distributed databases, log-structured
file systems and cloud gateways to completely rethink cloud
storage; building a cloud-native file system on top of object storage.

LucidLink believes that by creating the best of both worlds, we
address a highly sought-after solution for a setup where users and
applications can connect to the same single namespace, exposed
as local disk but backed by object storage. Highly scalable and
inexpensive object storage can be consumed as a local file system
layer that allows users and applications to access this from
anywhere. This can be used to replace on-premises file servers,
allow distributed teams access to their data, and provides ways to
connect applications, cloud regions and cloud providers all to the
same dataset.

The Filesystem

metadata

file system data

Object
Storage

LucidLink
Service

LucidLink
Clients

LucidLink Filespaces involve a hub and spoke
topology architecture, with a virtually limitless set
of clients connected to object storage and a
LucidLink Service. All you need to do is provision
an object storage bucket on your favorite cloud
service, and we add the magic that transforms it
into scale-out, and share-able volume.

To connect to the Filespace a LucidLink Client talks
to both the LucidLink Service holding the
metadata key value store, and to the object store
holding the file system data. The LucidLink Client
creates a local file system mount point.

Separating metadata and file system data allows
the Filespace to persist across all connected
clients. Files are split into individual blocks, where
the metadata provides the index allowing instant
access, no matter where your data is located. Object

Storage

each file system block
is an individual object
Hobject storage requests
are parallelizedN

Block
Cache
used for read
and write caching
I/Os acknowledged
locally HconfigurableN

file or directory
structure is
accessed

file is
written

read cache blocks write cache blocks

data compression

data encryption
Metadata
Cache

LucidLink
Service

BA

LucidLink
Client

TECHNICAL BRIEF



Read and Write Caching
LucidLink Filespaces come with a configurable block
size, used to determine file block boundaries.

While accessing file blocks sequentially or when
traversing a directory structure the LucidLink Client
pre-fetches blocks to meet demand. This allows you
to stream only the parts of a file you need. When
editing a dataset, this allows you to work on only the
part of the data that is required without wasting
bandwidth, local disk space, and most importantly,
eliminating the time spent waiting for the entire
dataset to synchronize.

Once a file is written on the client, metadata
operations have immediate effect, and as the file
uploads to object storage, metadata is updated
further to reflect changes. As the file system data
can take some time to transmit to the object storage
a local cache is used. Writes are acknowledged
locally giving a consistent file system experience.

Read and write cache ratios and reservations can be
configured, allowing this to be optimized to your
specific application or workload.

Snapshot Support

LucidLink
Clients

Servers and
workstations

Mobile
devices

To create the mount point a FUSE driver is used on LinuxIlike
systemsf and an equivalent driver is used on Windowsz

LucidLink
Clients

Cloud and
container
workloads

MultiIOS Support
The LucidLink client is available for Windows,
MacOS, Linux as well as Android and iOS. It is
perfectly suited for anything from hosting
large analytics datasets, cloud container
workloads, traditional application servers, to
use cases such as front-ending network
share user data, IoT device log gathering and
streaming content for virtual reality
applications.

B BA 12

A

1

A2A2 B3

B1
A2 B B3

Object storage is a stored in a distributed fashion so
the fragmentation of block data that is typically caused
by snapshots is not an issuez Instead multiple spindles
and disks across a scaleIout object storage solution are
used to keep linear performance as the Filespace growsz

1
2

write cache

customizable ratio of read and
write disk space reservations

Block
Cache

read cache

File read behavior is used to preIfetch
required dataf ensuring only the needed
blocks are pulled from object storagez

Only changes are sent
as new objects to
object storagez

Snapshot support comes natural to LucidLink as
Filespaces are built on a log-structured file system.
The file system metadata keeps track of individual
client edits and file versions. A new block is written
per edit allowing complete version control.

Snapshots are one of the biggest differentiating
features in the industry, leading to the growth of the
entire software and storage virtualization verticals.
LucidLink takes this one step further allowing cloud-
native snapshot support for object storage buckets,
without requiring expensive block storage or
complicated tiering.

Simply snap and clone your cloud-native Filespaces
with no performance impact. Mount and access a
different version of your Filespace for dev and test,
restore or compliance reasons. When a snapshot is
no longer required blocks are garbage collected out.



Data Encryption
LucidLink Filespaces use AES0x56 encryption% Every
object stored is encrypted1 metadata included% This
means that neither LucidLink nor the object
storage provider has visibility of data in the
Filespace%

LucidLink Client cached metadata and cached file
system data is encrypted at rest% This helps resolve
challenges with distributed teams% Instead of
downloading files on individual laptops1 or storing
specific data sets for application use outside of a
cloud sharing or network file service1 data remains
securely in the Filespace% Depending on the
configuration1 the data actively being used is
cached locally1 and if the LucidLink Client
disconnects1 so does the ability of the client to
access locally cached data%

Object
Storage

LucidLink
Service

file system data

metadata

file system data

metadata

OnZDisk Cache

InZMemory Cache

LucidLink
Clients

Data Compression
When writing a block to a LucidLink Filespace LZ4
compression is used% Depending on the block size
and data type this results in a compression ratio of
x0x%5:N% This means a 5qI reduction in disk space
for uncompressed and unencrypted data% Already
compressed data such as video1 audio may not
benefit from being compressed further% Encrypted
files cannot be compressed%

After LucidLink Filespace blocks are compressed
they are encrypted and are put in the write cache
and written to object storage%

Compression ingests blocks double the size of
the configured target Filespace block size4

~(56K

Block size is about 5W5 of original
size aligning with Filespace block
boundary4 Large blocks are split4

~5P(K

Block
Compression

LZ3 compression

Initializing a Filespace
When creating a Filespace in the LucidLink web
portal a new instance of the LucidLink Hub Service
is started% This container0based service is what is
used to host the Filespace metadata key value
store%

After that the LucidLink Client is downloaded and
used to initialize the Filespace% The client requests
cloud credentials to be used by both the client and
LucidLink Service to access the file space object
data%

Next the client requests a shared secret% This key is
only available on the LucidLink Client side and
would be used by other clients to access the same
Filespace%

The initialization process is split between the
LucidLink Web Portal and the local LucidLink Client
to ensure LucidLink never has access to the secret
key% This secret key is not stored anywhere except
in memory when the LucidLink Client is connected%
If this secret key is lost there is no way to recover
the Filespace data%

LucidLink Client initialization can also take place via
the command line1 allowing custom parameters
such as custom block sizes% In rare cases it is also
possible to run the LucidLink Service on0premises%

creating
new
filespace

container holding
filespace metadata
running LucidLink Hub

LucidLink
Web Portal

LucidLink
Service

initializing
filespace
service
Bwith endpoint
and bucket details0

LucidLink
Client

add your
cloud
credentials

P

(

set your
secret
key

)

filespace key and inital
metadata is generated
and encoded with secret
key4 only connected clients
have access4

launch initialization wizard

lucid daemon

lucid init-s3 --fs <filespace.domain> --password
<sharedsecret> --endpoint <ipaddress/url:port>
--access-key <accesskey> --secret-key <secretkey>
--https --region <region> --block-size <KiB>
--bucket-name <bucketname> --provider <vendor>

HowZto Initialize a Filespace via the CommandZline



Connected Clients
LucidLink Filespaces are designed to allow multiple
clients to connect to the same Filespace0 In large
scale environments this easily outperforms
traditional file servers as each client machine has
its own cachex metadata and connection to the
object store0 This is useful for use cases with
distributed workflows; large teams of usersx or a
group of distributed applications all connected to
the same data set0

For some workloadsx such as legacy file server
replacement or use as a backup repositoryx it may
make sense to have only a few clients connected to
the same Filespace0 These servers running the
LucidLink Client may be used to share1out S3 data
using traditional network protocolsx such as CIFS
and NFS0 It makes sense to significantly increase
the LucidLink client cache size for this scenario0

When connecting to a LucidLink Filespace
metadata is synchronized0 This allows fast file
access and applications to seek within files for
specific blocks only0

As files are acessed objects are prefetched from
object storage0 If the access pattern to either a file
byte range or directory is sequentialx this triggers
the prefetcher0 LucidLink Clients each have
individual connections to object storage allowing
for efficient access0

When writing to a LucidLink Filespace each file
write is versioned with a client identifier0 These
changes are cached locally before being uploaded0
Metadata is always synchronized first before file
system data is written to the object storage0

Metadata is shared with the LucidLink Service
which centrally arbitrates Filespace access0 Actual
file system data writes happen directly from the
LucidLink Client to the object storage0 Because
LucidLink is a log1structured file system any new
writes result in the creation of a new object0

LucidLink
Clients

metadatafilesystem
data

Object
Storage

LucidLink
Service

Laptops and
desktops

Mobile
devices

Servers

Distributed cloud and
container workloads

Virtually limitless scaleGout is enabled by
splitting out file system data on object storage
frommetadata in the LucidLink Service.

Improved performance comes from the ability
to preGcache client reads2 track and tie client
writes to individual clients and send this directly
to highlyGscalable object storage.

1 Upon connection
metadata is
synchronized
and updated
each time a
write occurs

1

Metadata
Cache
Block
Cache

A B C A B C A B C

Ar1 Ar3 Ar6

12 Object data
is pulled on
read and
writes are
associated with
client and file
version metadata

Read data is prefetched or pulled
straight from object storage.

Writes are acknowledged locally before
being transmitted to the object storage.

LucidLink Service arbitrates write access.
Write related metadata has priority over file
system block data and is transmitted first.

Br1 Ar1 Ar3 Ar6

Bw6

Ar1 Ar3 Ar6

Cw1 Cw3

Cr1 Br1 Br6 Cr1Cr3

Cr6 Cr2

Br1 Br3 Br6

Cr1 Cr3 Cr6 Aw1 Bw2

Garbage Collection
As LucidLink is log1structured and keeps track of
block and file versions it is possible to go back in
time using snapshot support0

Each new write turns into a new object on object
storage0 LucidLink never updates existing objectsx
ensuring this does not interfere with object storage
versioning and that LucidLink always has access to
the latest copy of data0

Stale objects are garbage collected0 The LucidLink
Service runs garbage collection every 10 minutes
by default0



Creating The Service You Need
The LucidLink Filespace architecture is flexible.
Each component in the architecture is modular,
allowing individual Filespaces to be created with or
without compression or encryption, with different
I/O acknowledgement settings, different block
sizes, different cache ratios or custom connection
limits, and more.

Over time as new features are added to LucidLink
Filespaces these follow the same extensible
architecture, allowing for a highly scalable file
system with exactly the functionality you need.

LucidLink aims to build tools and products that
address customer need when it comes to cloud
storage adoption. Good products are never built in
a vacuum, and at LucidLink we value feedback
from our customers. Customer support is a big
part of that, but more importantly it is our goal to
listen to your input and create products that
include your suggestions.

We believe cloud object storage has the power to
fundamentally change the way individuals and
businesses store and access their data. This
stretches from simple data sharing to consumption
of object storage by distributed applications. We
are at the forefront of object-based cloud storage
and services.

Stream your data from any cloud


